- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0002000003000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Valasik, Matthew (5)
-
Brantingham, Jeffrey (2)
-
Brantingham, P. Jeffrey (2)
-
Brantingham, P_Jeffrey (1)
-
Carter, Jeremy (1)
-
Mohler, George (1)
-
Mohler, George_O (1)
-
Raje, Rajeev (1)
-
Tita, George E. (1)
-
Vorobeychik, Yevgeniy (1)
-
Yu, Sixie (1)
-
and Mohler, George O. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Brantingham, P. Jeffrey; Valasik, Matthew; Tita, George E. (, Crime Science)
-
Mohler, George; Raje, Rajeev; Carter, Jeremy; Valasik, Matthew; Brantingham, Jeffrey (, IEEE International Conference on Systems, Man, and Cybernetics)
-
Brantingham, P. Jeffrey; Valasik, Matthew; and Mohler, George O. (, Statistics and public policy)Racial bias in predictive policing algorithms has been the focus of a number of recent news articles, statements of concern by several national organizations (e.g., the ACLU and NAACP), and simulation-based research. There is reasonable concern that predictive algorithms encourage directed police patrols to target minority communities with discriminatory consequences for minority individuals. However, to date there have been no empirical studies on the bias of predictive algorithms used for police patrol. Here, we test for such biases using arrest data from the Los Angeles predictive policing experiments. We ind that there were no significant differences in the proportion of arrests by racial-ethnic group between control and treatment conditions. We ind that the total numbers of arrests at the division level declined or remained unchanged during predictive policing deployments. Arrests were numerically higher at the algorithmically predicted locations. When adjusted for the higher overall crime rate at algorithmically predicted locations, however, arrests were lower or unchanged.more » « less
-
Brantingham, P_Jeffrey; Valasik, Matthew; Mohler, George_O (, Statistics and Public Policy)
An official website of the United States government

Full Text Available